# Chemical Safety Data Sheet MSDS / SDS # D-(+)-ALLOSE Revision Date:2025-02-01 Revision Number:1 # SECTION 1: Identification of the substance/mixture and of the company/undertaking #### **Product identifier** Product name : D-(+)-ALLOSE CBnumber : CB6416942 CAS : 2595-97-3 EINECS Number : 219-994-4 Synonyms : D-Allose,(2R,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexanal ### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses : For R&D use only. Not for medicinal, household or other use. Uses advised against : none ### **Company Identification** Company : Chemicalbook Address : Building 1, Huihuang International, Shangdi 10th Street, Haidian District, Beijing Telephone : 010-86108875 ### SECTION 2: Hazards identification ### Classification of the substance or mixture no data available ### Label elements ### Pictogram(s) Signal word no data available # Hazard statement(s) no data available ### Precautionary statement(s) #### Prevention no data available ### Response no data available ### Storage no data available ### Disposal no data available #### Other hazards no data available # SECTION 3: Composition/information on ingredients #### Substance Product name : D-(+)-ALLOSE Synonyms : D-Allose,(2R,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexanal CAS : 2595-97-3 EC number : 219-994-4 MF : C6H12O6 MW : 180.16 ### SECTION 4: First aid measures ### Description of first aid measures ### If inhaled Fresh air, rest. ### Following skin contact Take off contaminated clothing immediately. Wash off with soap and plenty of water. Consult a doctor. #### Following eye contact First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then refer for medical attention. ### Following ingestion Rinse mouth. ### Most important symptoms and effects, both acute and delayed No toxicity (USCG, 1999) ### Indication of any immediate medical attention and special treatment needed Pancreatic beta cells are highly sensitive to oxidative stress, which might play an important role in beta cell death in diabetes. The protective effect of 6,6'-bieckol, a phlorotannin polyphenol compound purified from Ecklonia cava, against high glucose-induced glucotoxicity was investigated in rat insulinoma cells. High glucose (30 mM) treatment induced the death of rat insulinoma cells, but treatment with 10 or 50 ug/mL 6,6'-bieckol significantly inhibited the high glucose-induced glucotoxicity. Furthermore, treatment with 6,6'-bieckol dose-dependently reduced the level of thiobarbituric acid reactive substances, generation of intracellular reactive oxygen species, and the level of nitric oxide, all of which were increased by high glucose concentration. In addition, 6,6'-bieckol protected rat insulinoma cells from apoptosis under high-glucose conditions. These effects were associated with increased expression of the anti-apoptotic protein Bcl-2 and reduced expression of the pro-apoptotic protein Bax. These findings indicate that 6,6'-bieckol could be used as a potential nutraceutical agent offering protection against the glucotoxicity caused by hyperglycemia-induced oxidative stress associated with diabetes. # SECTION 5: Firefighting measures ### **Extinguishing media** Suitable extinguishing media: Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide. ### **Specific Hazards Arising from the Chemical** no data available ### Advice for firefighters Wear self-contained breathing apparatus for firefighting if necessary. ### **NFPA 704** # SECTION 6: Accidental release measures ### Personal precautions, protective equipment and emergency procedures Avoid dust formation. Avoid breathing mist, gas or vapours. Avoid contacting with skin and eye. Use personal protective equipment. Wear chemical impermeable gloves. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Keep people away from and upwind of spill/leak. ### **Environmental precautions** Sweep spilled substance into covered containers. Wash away remainder with plenty of water. ### Methods and materials for containment and cleaning up ACCIDENTAL RELEASE MEASURES: Personal precautions, protective equipment and emergency procedures: Avoid dust formation. Avoid breathing vapors, mist or gas; Environmental precautions: No special environmental precautions required; Methods and materials for containment and cleaning up: Sweep up and shovel. Keep in suitable, closed containers for disposal. # SECTION 7: Handling and storage ### Precautions for safe handling Handling in a well ventilated place. Wear suitable protective clothing. Avoid contact with skin and eyes. Avoid formation of dust and aerosols. Use non-sparking tools. Prevent fire caused by electrostatic discharge steam. ### Conditions for safe storage, including any incompatibilities Separated from strong oxidants. Well closed. Keep container tightly closed in a dry and well-ventilated place. Hygroscopic. Keep in a dry place. # SECTION 8: Exposure controls/personal protection ### **Control parameters** ### Occupational Exposure limit values no data available ### **Biological limit values** no data available ### **Exposure controls** Ensure adequate ventilation. Handle in accordance with good industrial hygiene and safety practice. Set up emergency exits and the riskelimination area. ### Individual protection measures ### Eye/face protection Wear tightly fitting safety goggles with side-shields conforming to EN 166(EU) or NIOSH (US). ### Skin protection Wear fire/flame resistant and impervious clothing. Handle with gloves. Gloves must be inspected prior to use. Wash and dry hands. The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it. ### Respiratory protection If the exposure limits are exceeded, irritation or other symptoms are experienced, use a full-face respirator. #### Thermal hazards no data available # SECTION 9: Physical and chemical properties ### Information on basic physicochemical properties | Physical state | Solid | |--------------------------------------------|--------------------| | Colour | White | | Odour | Odorless | | Melting point/freezing point | 268°C(lit.) | | Boiling point or initial boiling point and | 87°C/0.1mmHg(lit.) | | boiling | range | |---------|-------| |---------|-------| | Combustible. | |--------------------------------------------------------| | no data available | | | | 65°C(lit.) | | Not flammable (USCG, 1999) | | no data available | | pH of 0.5 molar aqueous solution = 5.9 /alpha-glucose/ | | no data available | | DMSO (Slightly), Methanol (Slightly), Water (Slightly) | | no data available | | 1.83E-08mmHg at 25°C | | 1.732 g/cm3 | | no data available | | no data available | | | # SECTION 10: Stability and reactivity ### Reactivity Reacts violently with strong oxidants. ### **Chemical stability** Stable under recommended storage conditions. ### Possibility of hazardous reactions Dust explosion possible if in powder or granular form, mixed with air.A weak reducing agent. ### Conditions to avoid no data available ### Incompatible materials Incompatible materials: Strong oxidizing agents ### Hazardous decomposition products When heated to decomposition it emits acrid smoke and irritating fumes. # SECTION 11: Toxicological information ### **Acute toxicity** • Oral: LD50 Rat oral 25,800 mg/kg Inhalation: no data available • Dermal: no data available #### Skin corrosion/irritation no data available ### Serious eye damage/irritation no data available ### Respiratory or skin sensitization no data available ### Germ cell mutagenicity no data available ### Carcinogenicity no data available ### Reproductive toxicity no data available ### STOT-single exposure no data available ### STOT-repeated exposure no data available ### **Aspiration hazard** no data available # SECTION 12: Ecological information ### **Toxicity** Toxicity to fish: no data available Toxicity to daphnia and other aquatic invertebrates: no data available Toxicity to algae: no data available Toxicity to microorganisms: no data available ### Persistence and degradability AEROBIC: D(+)-Glucose, present at 1000 mg/L, reached >90% of its theoretical BOD in 2 days using a non-adapted activated sludge inoculum at 1 g/L (dry matter) in a Zahn-Wellens static test(1). The biodegradation half-life of D(+)-glucose in aerobic aquifer material (not heavily polluted), including Ontario loam and sand, South Carolina sand and Holland sand, is reported to range from 0.6-1.1 days(2). Using an electrolytic respirometry method with a 100 mg/L compound concentration and an activated sludge inoculum, D(+)-glucose was easily biodegraded with a 46-56% theoretical BOD in 100-110 hours(3). Using standard and seawater dilution methods, the 5-day BOD of D(+)-glucose was determined as 74.8 and 75.2% respectively(4). D(+)-Glucose was readily biodegradable in batch tests using adapted activated sludge with a biodegradation rate of 180.0 mg COD/g-hour(5). Biodegradation of D(+)-glucose in various samples of aquifer, saturated zone, and surface soils was found to occur rapidly with somewhat slower rates in till soil samples(6); based on measured rate constants(6), the biodegradation half-life ranged from 0.25 to 19 days. ### Bioaccumulative potential An estimated BCF of 3 was calculated in fish for D(+)-glucose(SRC), using a log Kow of -3.00(1) and a regression-derived equation(2). According to a classification scheme(3), this BCF suggests the potential for bioconcentration in aquatic organisms is low(SRC). ### Mobility in soil Using a structure estimation method based on molecular connectivity indices(1), the Koc of D(+)-glucose can be estimated to be 10(SRC). According to a classification scheme(2), this estimated Koc value suggests that D(+)-glucose is expected to have very high mobility in soil. ### Other adverse effects no data available # **SECTION 13: Disposal considerations** ### Disposal methods #### **Product** The material can be disposed of by removal to a licensed chemical destruction plant or by controlled incineration with flue gas scrubbing. Do not contaminate water, foodstuffs, feed or seed by storage or disposal. Do not discharge to sewer systems. #### Contaminated packaging Containers can be triply rinsed (or equivalent) and offered for recycling or reconditioning. Alternatively, the packaging can be punctured to make it unusable for other purposes and then be disposed of in a sanitary landfill. Controlled incineration with flue gas scrubbing is possible for combustible packaging materials. # SECTION 14: Transport information #### **UN Number** ADR/RID: UN3439 (For reference only, please check.) IMDG: UN3439 (For reference only, please check.) IATA: UN3439 (For reference only, please check.) ### **UN Proper Shipping Name** ADR/RID: NITRILES, SOLID, TOXIC, N.O.S. (For reference only, please check.) IMDG: NITRILES, SOLID, TOXIC, N.O.S. (For reference only, please check.) IATA: NITRILES, SOLID, TOXIC, N.O.S. (For reference only, please check.) ### Transport hazard class(es) ADR/RID: 6.1 (For reference only, please check.) IMDG: 6.1 (For reference only, please check.) IATA: 6.1 (For reference only, please check.) ### Packing group, if applicable ADR/RID: I (For reference only, please check.) IMDG: I (For reference only, please check.) IATA: I (For reference only, please check.) ### **Environmental hazards** ADR/RID: No IMDG: No IATA: No ### Special precautions for user no data available ### Transport in bulk according to IMO instruments no data available # **SECTION 15: Regulatory information** ### Safety, health and environmental regulations specific for the product in question **European Inventory of Existing Commercial Chemical Substances (EINECS)** Listed. **EC Inventory** Listed. United States Toxic Substances Control Act (TSCA) Inventory Not Listed. China Catalog of Hazardous chemicals 2015 Not Listed. New Zealand Inventory of Chemicals (NZIoC) Listed. **PICCS** Not Listed. **Vietnam National Chemical Inventory** Not Listed. **IECSC** Not Listed. Korea Existing Chemicals List (KECL) Listed. # SECTION 16: Other information ### Abbreviations and acronyms CAS: Chemical Abstracts Service ADR: European Agreement concerning the International Carriage of Dangerous Goods by Road RID: Regulation concerning the International Carriage of Dangerous Goods by Rail IMDG: International Maritime Dangerous Goods IATA: International Air Transportation Association TWA: Time Weighted Average STEL: Short term exposure limit LC50: Lethal Concentration 50% LD50: Lethal Dose 50% EC50: Effective Concentration 50% #### References IPCS - The International Chemical Safety Cards (ICSC), website: http://www.ilo.org/dyn/icsc/showcard.home HSDB - Hazardous Substances Data Bank, website: https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm IARC - International Agency for Research on Cancer, website: http://www.iarc.fr/ eChemPortal - The Global Portal to Information on Chemical Substances by OECD, website: http://www.echemportal.org/echemportal/index?pageID=0&request\_locale=en CAMEO Chemicals, website: http://cameochemicals.noaa.gov/search/simple ChemlDplus, website: http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp ERG - Emergency Response Guidebook by U.S. Department of Transportation, website: http://www.phmsa.dot.gov/hazmat/library/erg Germany GESTIS-database on hazard substance, website: http://www.dguv.de/ifa/gestis/gestis-stoffdatenbank/index-2.jsp ECHA - European Chemicals Agency, website: https://echa.europa.eu/ #### Disclaimer: The information in this MSDS is only applicable to the specified product, unless otherwise specified, it is not applicable to the mixture of this product and other substances. This MSDS only provides information on the safety of the product for those who have received the appropriate professional training for the user of the product. Users of this MSDS must make independent judgments on the applicability of this SDS. The authors of this MSDS will not be held responsible for any harm caused by the use of this MSDS.